Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor.

نویسندگان

  • Weijing Cai
  • John C He
  • Li Zhu
  • Changyong Lu
  • Helen Vlassara
چکیده

Advanced glycation end product receptors (AGERs) play distinct functional roles in both the toxicity and disposal of advanced glycation end products (AGEs), substances that are linked to diabetes and aging. Overexpression of AGER1 in murine mesangial cells (MCs) (MC-R1) inhibited AGE-induced MAPK1,2 phosphorylation and NF-kappaB activity and also increased AGE degradation. The mechanism of the inhibitory effects of AGER1, upstream of MAPK, was explored in MCs and HEK293 AGER1-expressing cells. AGE-induced Ras activation was found to be linked to Shc/Grb2 complex formation and Shc phosphorylation in MCs, responses that were markedly reduced in MC-R1 cells. AGE responses also included EGF receptor (EGFR) phosphorylation in MCs or HEK293 cells, but this link was blocked in both MC-R1 and HEK293-R1 cells. Coexpression of AGER1 and EGFR in HEK293 cells decreased AGE-mediated EGFR and p44/p42 phosphorylation but not EGF-induced p44/p42 activation. AGE, S100/calgranulin, or H(2)O(2) promoted MAPK phosphorylation in EGFR(+) cells in a manner that was inhibitable by an EGFR inhibitor, AG1478. Also, in AGER1 cells, AGE-induced H(2)O(2) formation and AGE- or S100-induced p44/p42 phosphorylation were suppressed, and these effects were restored by R1 siRNA. These data confirm that R1 negatively regulates AGE-mediated oxidant stress-dependent signaling via the EGFR and Shc/Grb2/Ras pathway. AGER1 could serve as a model for developing therapeutic targets against vascular and kidney disorders related to diabetes and aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress

Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...

متن کامل

Erratum to “Factors Influencing Oxidative Imbalance in Pulmonary Fibrosis: An Immunohistochemical Study”

The authors of the paper would like to apologize for the following errors contained in the original paper. 1. The exact Figure 1 in the original paper has to be corrected as Figure 1 in this paper. 2. References in the original paper have to be corrected by adding the following:vanced glycation end products cause epithelial-my-ofibroblast transdifferentiation via the receptor for advanced glyca...

متن کامل

Advanced glycation end product precursors impair epidermal growth factor receptor signaling.

Formation of advanced glycation end products (AGEs) is considered a potential link between hyperglycemia and chronic diabetic complications, including disturbances in cell signaling. It was hypothesized that AGEs alter cell signaling by interfering with growth factor receptors. Therefore, we studied the effects of two AGE precursors, glyoxal (GO) and methylglyoxal (MGO), on the epidermal growth...

متن کامل

Cannabinoid 1 Receptor Promotes Cardiac Dysfunction, Oxidative Stress, Inflammation, and Fibrosis in Diabetic Cardiomyopathy

Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors ...

متن کامل

Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress.

The receptor for advanced glycation end products (RAGE) may promote diabetic vascular and renal disease through the activation of intracellular signaling pathways that promote oxidative stress. Oxidative stress is a mediator of hyperglycemia-induced cell injury and a unifying theme for all mechanisms of diabetic complications, but there are few studies on the expression and potential contributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 37  شماره 

صفحات  -

تاریخ انتشار 2006